
Kernel methods for image classification task

Victoria BRAMI, Margot COSSON

October 4, 2022

Support vector machines are powerful tools to achieve
image classification tasks. This report describes a multi-
classes’ SVC model built to classify a dataset of 5000 train-
ing samples in p = 10 classes and gives the main results
obtained.

1 Classification model

1.1 Kernels

Among all existing kernels, we chose to use the polynomial
kernel parametrized by its power d ∈ N :

K(x, y) = (xT y)d (1)

Indeed, the task requires a non linear kernel. We also
benchmarked the linear and the RBF kernels which gave
respectively 20% and 4% smaller accuracies on the valida-
tion set (20% of the un-seen training set) compared to the
polynomial kernel’s performances.

1.2 Binary Support Vector Classifier

The base unit of the model is the binary support vector
classifier which aims to separate the two classes of samples
with a separating hyper-surface of equation f(x) + b = 0
with f , function in the RKHS of the chosen kernel K. The
associated optimization problem is :

min
f,b,ξi

1

2
∥f∥2 + C

n∑
i=1

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi ∀i ∈ [1, n]

ξi ≥ 0 ∀i ∈ [1, n]

(2)

whose dual is :

min
α

l(α) =
1

2
(y ⊙ α)TK(y ⊙ α)− 1

Tα

s.t. yTα = 0

0 ≤ αi ≤ C ∀i ∈ [1, n]

(3)

There exists no closed-form solution to this minimization
problem. However, one can find the optimal solution α∗

thanks to a gradient descent or a quadratic programming

solver. Then, the support vectors S can be identified as
follows :

 C > α∗
i > 0 iif xi is a support vector,

α∗
i = 0 iif xi is outside the margins,

α∗
i = C iif xi is inside the margins.

(4)

from which, one can build the optimal separating hyper-
surface :

f∗ =
∑
i∈S

α∗
i yikxi

and b∗ =
1

|S|
∑
i∈S

(yi − f∗(xi)) (5)

and infer the resulting binary classifier:

h∗(x) = f∗(x) + b∗ (6)

class(x) = c∗(x) = 2× (h∗(x) > 0)− 1 (7)

1.3 Multi-class Support Vector Classifier

As the model aims to classify data distributed in p = 10
classes, it has to combine several binary SVC [MA99]. We
tried two different policies :

• The One Vs All (ova) strategy builds p binary SVC:
{h∗

i }i∈[1,p]. Each classifier is trained to separate one
class from the rest of the datapoints. Then, the pre-
dicted class of a sample is the one who gets the highest
classification score h∗

i (x).

class(x) = argmax({h∗
1(x), ..., h

∗
p(x)}) (8)

• The One Vs One (ovo) strategy builds p2 binary SVC:
{h∗

ij}i,j∈[1,p]2 . Each classifier separates only the sam-
ples of two classes. Then, the predicted class of a sam-
ple is the one who gets the higher sum of prediction
scores c∗ij(x) = 2 × (h∗

ij(x) > 0) − 1. Note also that

only p(p−1)
2 classifiers are required since one can state

∀i ∈ [1, p],∀j ∈ [i+ 1, p], h∗
ji = −h∗

ij .

class(x) = argmax({
p∑

j=2

c∗1j(x), ...,

p−1∑
j=1

c∗pj(x)}) (9)

On the validation set, the One Vs One policy gave ac-
curacy smaller by 1 point of percent than the one obtained
with the One Vs All strategy. Therefore, we opted for the
ova technique. Note however that the ovo algorithm is way
faster in terms of computational time.

1.4 Hog features extractor

Raw images contain a lot of information but they are
also too pixel-specific to allow the SVC to classify effi-
ciently. Therefore, a pre-processing step for feature extrac-
tion is required, like the Histogram of Oriented Gradients
descriptor (HOG). It outputs a simplified representation
HN (I) ∈ R|patches|×|bins| focused on the structure and the
shape of the picture’s elements of an image I [DT05]. It
iteratively builds the following objects :

∇h(x, y) = I(x+ 1)− I(x− 1), ∀(x, y) ∈ I (10)

∇v(x, y) = I(y + 1)− I(y − 1), ∀(x, y) ∈ I (11)

M(x, y) =
√
∇h(x, y)2 +∇v(x, y)2, ∀(x, y) ∈ I (12)

ϕ(x, y) = arctan
∇v(x, y)

∇h(x, y)
, ∀(x, y) ∈ I (13)

Hq(b) =
∑

(x,y)∈q

1 ϕ(x,y)∈
[v(b),v(b+1)[

× M(x, y)ϕ(x, y)

v(b+ 1)− v(b)
,

∀q ∈ patches, ∀b ∈ bins

(14)

HN
q (b) =

Hq(b)∑
t∈Q

∑
b Ht(b)

,

∀Q ∈ normalization patches,

∀q ∈ Q, ∀b ∈ bins

(15)

Features are extracted for each sample and the model is
trained on the features’ dataset: {HN (I)}I∈dataset.

2 Results

To solve the optimization problem described by the equa-
tion 3, we used the quadratic solver of CVXOPT [MSA13]
with P = (yyT)⊙K, q = −1n, A = y, b = 0, G = [−In|In],
h = [0∗1n|C∗1n].We determined the best hyper-parameters
by cross-validation :

• Regularization constant C = 1

• Polynomial kernel with power q = 5

• Hog : patch radius rpatch = 4 pixels, normalization
patch radius rnormalization = 7 blocks, bins number
b = 9.

With these hyper-parameters, the model described above
yields the following results:

Train Test
Accuracy 100.00 % 58.60 %
Time 568.82 s —

The corresponding test predictions’ file Yte.csv can be
obtained by running the command python start.py. To
further explore the implementation, one can access the folder
src/ where hog.py contains the code relative to the HOG
features’ extractor tool, kernels.py and svm.py are the
core part of the model and predict.py compiles the whole
pipeline and can be called via python predict.py with
some particular values for the hyper-parameters through
the --hyperparameter value style. The code is available
through the following link :

https://github.com/Victoria-brami/kernel data challenge

3 Discussion

To conclude, we built a multi-classes’ Support Vector
Classifier (SVC) with p = 10 binary SVC based on the poly-
nomial kernel. Each classifier discriminates one class from
the rest. Then, the predicted class of a sample is the one
corresponding to the highest SVC score. The trained model
gave an accuracy of 58.60% on a 2000 samples test set.

We thought about few improvements for this image clas-
sification model. First of all, one could opt for a more elab-
orate features’ extractor in the pre-processing step. For
instance, it would be interested to try the Scale Invariant
Feature Transformation (SIFT) algorithm. Furthermore, it
could be relevant to use the classification scores h∗(x) to
post-process the solution. For instance, in ova strategy, if,
for a certain sample, the two best classes’ scores are very
close, then it could be interesting to fit a binary classifier to
distinguish only samples from these two classes in order to
refine the final prediction.

References

[DT05] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In 2005 IEEE
Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), vol-
ume 1, pages 886–893 vol. 1, 2005.

[MA99] E. Mayoraz and E. Alpaydin. Support vector ma-
chines for multi-class classification. In J. Mira and
J.V. Sánchez-Andrés, editors, Engineering Appli-
cations of Bio-Inspired Artificial Neural Networks,
volume 1607 of Lecture Notes in Computer Sci-
ence, pages 833–842. Springer, 1999.

[MSA13] Lieven Vandenberghe Martin S Andersen,
Joachim Dahl. CVXOPT: A Python package for
convex optimization, 2013.

	Classification model
	Kernels
	Binary Support Vector Classifier
	Multi-class Support Vector Classifier
	Hog features extractor

	Results
	Discussion

