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1. Introduction

Tokenization is one of the core components of the NLP
pipeline: its crucial purpose is to translate text into data that
can be processed by a language model. It can be done, as
with WordPiece [ 5], by splitting the text into words and the
rarer words into smaller meaningful subwords: this is sub-
word tokenization. This approach is used in BERT[4] and
other Transformer[ 0] models based on it, such as DISTIL-
BERT[7] or MOBILEBERT[9].

However, such tokenization may lead the models to be
sensitive to the noise in the training data, would it be nat-
urally present [8] or adversarially created [5]. Moreover,
splitting sentences into subwords may work well in English,
but it is not as adapted for other languages with a different
morphology.

In order to tackle this issue, character-level language
models such as CANINE [2] have been proposed. In [2]
the authors introduce this new model which they have pre-
trained and then evaluated on TYDI QA [!], and compared
it to mBERT.

In this project, we wanted to do a more extensive anal-
ysis of the performances of CANINE on downstream tasks,
and to evaluate its robustness to noisy inputs. We fine-tuned
and evaluated both versions of CANINE on the GLUE[11]
benchmark and compared them to mBERT. We then stud-
ied their performances on multilingual datasets. Finally, we
handcrafted a simple algorithm to add noise to the input
data, and we evaluated the robustness of CANINE using the
previous datasets.

2. CANINE

CANINE is a character-level model which differs as least
as possible from deep transformer models such as (m)BERT.
What makes the greatest difference is that it does not use
an explicit tokenization step. Instead, the model is trained
directly at a Unicode character-level: the text is turned into a
sequence of characters which are converted into its Unicode
code point.

However, training at a character-level inevitably comes
with a longer sequence length, which CANINE solves with
an efficient downsampling strategy, before applying the en-

coder. This latter portion of the model is similar to mBERT
and derivatives. Finally, a character-level output representa-
tion is built by upsampling and then applying a final trans-
former layer. CANINE can be pre-trained using either a sub-
word loss (those models are CANINE-S) or an autoregres-
sive character loss (denoted as CANINE-C).

3. Experiments
3.1. Experimental setup

We fine-tuned our models on two separate NVIDIA P100
GPUs using Google Colab. As it is important for CANINE
to have a long sequence length to capture enough context,
we could not use large batch sizes. In the end, we kept
a maximum sequence length of 2048 for CANINE models
and we used 512 for mBERT. The maximum batch size that
could be used for CANINE was 6, and we kept the same size
for mBERT in order to have similar experimental setups.
Similarly as in the original paper, we observed that mBERT
was 35% faster to train than CANINE.

We used the pre-trained models available in the
Transformers[14] library.  The available mBERT has
been pre-trained on the multilingual Wikipedia data
alone, while the CANINE models were pre-trained on
Wikipedia+BookCorpus. This is different from [2], as they
pre-trained mBERT also on Wikipedia+BookCorpus in or-
der to have fair comparisons. One could therefore expect
that our mBERT would perform worse than the one studied
in the original CANINE paper.

We originally wanted to reproduce the published results
on TYD1 QA, but with limited computational resources,
both in terms of GPU capabilities and maximum training
duration, it was not feasible for us.

3.2. Standard baseline

GLUE We first evaluate CANINE models on standard
tasks. To do so, we choose various sub-tasks of the General
Language Understanding Evaluation (GLUE) benchmark
[12], which are for most Sequence Classification tasks.
We found relevant to use these tasks as GLUE benchmark
is very commonly used to measure language models effi-
ciency. Among the nine tasks available in GLUE, we do not



evaluate the models on QQP and MNLI which are too large,
and neither on CoLLA since the task of English acceptability
is not compatible with the study of the influence of the noise
that we do later in this work.

We follow the training procedure advised in the Trans-
formers libraryl. We fine-tune CANINE-S, CANINE-C and
mBERT for 3 epochs on each task except for MRPC and
WNLI, where the fine-tuning is performed over 5 epochs
because the two datasets are much smaller. We also use a
learning rate of le — 5 for the 3 models and the hyperpa-
rameters discussed earlier. The performances of the three
models are displayed in table 1.

Some of these tasks have a small dataset and training can
lead to high variance in the results between different runs,
but we find similar ones as those of reference in the Trans-
formers library obtained with larger batches. Therefore we
can make the assumption that our training procedure is cor-
rect and that our small batch size does not significantly in-
fluence the final results. Furthermore, the WNLI set is prob-
lematic since the split between the train and dev set is ad-
versarial, and results on this task should not influence the
overall appreciation of the models’.

We find that both CANINE-C and CANINE-S consis-
tently slightly underperform mBERT across the different
tasks.

3.3. Question Answering baseline

Because we could not replicate the results on TYDI QA,
a question answering dataset covering 11 diverse languages,
we instead focused on evaluating CANINE on a different
question answering dataset and on a multilingual task.

SQuAD v1.1 The Stanford Question Answering dataset
(SQuAD)[6] is a reading comprehension dataset in English,
commonly used to evaluate deep encoders performances.
Given a full paragraph of an article, it must return the start
and end bytes of the answer to a specific question. We re-
strict the fine-tuning on 60% of SQUAD dataset, and we
train for 2 epochs with a learning rate of 1le — 5, and the
same other hyperparameters as before.

Using this training procedure yields the results in table 2.
Again, our results with mBERT are close to the ones given
by the Transformers library. This time the drop in perfor-
mances between mBERT and both CANINE models is sig-
nificant.

3.4. Multilingual benchmark

We then evaluate the character-level tokenization ap-
proach used for CANINE on a multilingual task, to seek if

'https ://github.com/huggingface/transformers/
blob/main/examples/pytorch/text-classification/
README . md

2See entry (12) in https://gluebenchmark.com/faq.

such a model would generalize better on different languages
than those with a classical subword-tokenizer.

XNLI The Cross-lingual NLI Corpus (XNLI)[3] is a sub-
set of MultiNLI[ 3], extended to 15 languages and made
of sentence pairs annotated with textual entailment. The
task is a 3-way classification task: given a pair of sentences
(premise and hypothesis), the goal is to determine whether
the hypothesis entails, contradicts the premise, or none of
them. The training is done with English, and we restrict the
evaluation to one of three languages: two languages using
the Latin script (Spanish and Deutsch) and Vietnamese.

We deliberately choose languages which alphabet is not
made of logograms. As we later analyze the effect of incor-
porating noise into the dataset, the noise cannot be modelled
in the same way for logograms-based languages as previ-
ously.

Table 3 displays the scores obtained for these three lan-
guages. One can notice that the more the validation lan-
guage used is morphologically close to English, the higher
the accuracy is: the accuracies reach their highest value
for all models on Spanish validation dataset. On the con-
trary, they struggle more on the same task when the vali-
dation dataset is quite semantically different from English
language. We also notice a bigger gap between mBERT and
CANINE on a language like Vietnamese.

4. Adding noise
4.1. Noise mechanism

One of the motivations that lead to the design of CA-
NINE was to find an approach that can “generalize beyond
the orthographic forms encountered during pre-training”’[2].
Thanks to the character level tokenization, CANINE may
be more robust to orthographic alterations. In order to as-
sess this hypothesis, we devised a simple mechanism to add
noise to existing data. It consists in either subtracting, re-
placing, swapping or adding a letter in a word, or to swap
two words. Some examples of such altered sentences are
shown in table 4.

With this simple scheme we can control the level of noise
that we want. We fine-tune again CANINE and mBERT on
the previous datasets but this time with varying levels of
noise. A percentage of noise correspond to the proportion
of sentences where noise is applied. Each noised sentence
of N words has at most N perturbations, the number of per-
turbations within the sentence being chosen randomly. We
use 10%, 20%, 40% and 90% of noise on GLUE, and 70%
on XNLI. For a given task or target language, the noise pro-
cess has been applied just once: mBERT and both CANINE
models have seen the same training and evaluation data. For
both datasets, we use the same training hyperparameters as
before.
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Model SST-2 (acc) MRPC (Fl/ace) STS-B (pears./spear.) QNLI (acc) RTE (acc) WNLI (acc)
mBERT reference 0.9232 0.8885/0.8407 0.8864 / 0.8848 0.9066 0.6570 0.5634
mBERT 0.8842 0.8920 / 0.8505 0.8838 / 0.8815 0.9107 0.6679 0.5634
CANINE-S 0.8165 0.8739 / 0.8260 0.8373/0.8364 0.8735 0.6173 0.5634
CANINE-C 0.8394 0.8785/0.8284 0.8333/0.8336 0.8667 0.6282 0.5634

Table 1: Results on the dev set of 6 tasks from the GLUE benchmark. The results of "mBERT reference” are those given by

the Transformers library.

Model F1-Score Accuracy
mBERT reference 0.8852 0.8122
mBERT 0.8724 0.7966
CANINE-S 0.7238 0.6165
CANINE-C 0.7023 0.5798

Table 2: Scores on the SQuAD Dataset.

The reference

model was trained on the full dataset, not on 60% of it as
the other models.

Model Spanish Deutsch Vietnamese
mBERT reference 0.7094
mBERT 0.7341 0.7028 0.6851
CANINE-S 0.6526 0.5879 0.4878
CANINE-C 0.6578 0.6402 0.5124

Table 3: Accuracy obtained with mBERT and CANINE on
XNLI on Spanish, Deutsch and Vietnamese languages. The
reference results were given only for Deutsch.

In addition to the raw scores, we also tracked the relative
and absolute drop in performances. For a given noise per-
centage, for each model independently, we computed the
relative and absolute evolution of the scores compared to
those obtained without any noise.

4.2. Results

GLUE with noise The results on noisy GLUE are shown
in table 5. Overall, there may be artefacts due to the stochas-
ticity of our noise mechanism, and the results would have
benefited from making several runs and taking the mean and
standard deviation of the scores, especially on the smaller
tasks.

We plot in figs. | and 2 the relative and absolute drops
in scores with 90% noised data. In all GLUE tasks, fig. 1
illustrates that CANINE-C demonstrates a higher robustness
than mBERT towards noise, but as it can be seen in table 5
mBERT still has better scores overall. This gap in scores
is quite visible on SST-2, STS-B and QNLI tasks. Even
though the absolute scores are higher for mBERT, CANINE
models may tend to generalize better on noisy datasets. It is
still important to highlight that the differences in robustness
between the models in only in the order of a few percents.
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Figure 1: Relative evolution of the scores on GLUE tasks
for CANINE and mBERT with 90% noised dataset. The rel-
ative drop is the highest for mBERT on almost all the tasks.
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Figure 2: Absolute evolution of the scores on GLUE tasks
for CANINE and mBERT with 90% noised dataset.

XNLI with noise For XNLI, we choose a 70% noise pro-
portion, in order to measure the effect of adding a high level
of noise to multilingual data. As shown in table 6, the fine-
tuning on all the 3 languages is impacted by the addition
of noise in the training dataset. We observe a decrease of
4-5 % for all scores on all models. Again, as seen in figs. 3
and 4 the relative and absolute decrease in accuracy is larger



Kind of Noise Example
None Forcing his way into country properties was possible due to his legitimation.
Subtract letter Forcing his way into country proerties was possible due to his legitimation.
Add letter Forcing his way into countery properties was possible due to his legitimation.

Swap letters

Replace letters

Swap words

Forcing his way into country properties was possible deu to his legitimation.
Forcing his way into country properties was possible due to his legitimation.
Forcing his way into properties country was possible due to his legitimation.

Table 4: Different sorts of noise applied on GLUE tasks datasets’ words.

10% Noise
Model SST-2 (acc) MRPC (Fl/ace) STS-B (pears./spear.) QNLI (acc) RTE (acc) WNLI (acc)
mBERT 0.9048 0.9101/0.8750 0.8714 / 0.8681 0.9043 0.6931 0.5634
CANINE-S 0.8268 0.8470/0.7892 0.8300/0.8307 0.8625 0.5957 0.5634
CANINE-C 0.8612 0.8305/0.8039 0.8333/0.8336 0.8720 0.6245 0.5634
20% Noise
Model SST-2 (acc) MRPC (Fl/ace) STS-B (pears./spear.) QNLI (acc) RTE (acc) WNLI (acc)
mBERT 0.8876 0.8958 / 0.8603 0.8639 / 0.8615 0.9021 0.7076 0.4507
CANINE-S 0.8177 0.8427/0.7868 0.8209/0.8178 0.8775 0.5957 0.4085
CANINE-C 0.8326 0.8685/0.8211 0.8297 7/ 0.8300 0.8669 0.6420 0.4366
40% Noise
Model SST-2 (acc) MRPC (Fl/ace) STS-B (pears./spear.) QNLI (acc) RTE (acc) WNLI (acc)
mBERT 0.8807 0.8817 / 0.8382 0.8450 / 0.8423 0.8968 0.6390 0.5070
CANINE-S 0.8452 0.8817 / 0.8382 0.7933/0.7958 0.8526 0.5776 0.4930
CANINE-C 0.8469 0.8541/0.8015 0.8115/0.8162 0.8523 0.5884 0.5070
90% Noise
Model SST-2 (acc) MRPC (Fl/ace) STS-B (pears./spear.) QNLI (acc) RTE (acc) WNLI (acc)
mBERT 0.8612 0.8702 / 0.8186 0.8070/0.8048 0.8766 0.6209 0.4789
CANINE-S 0.8039 0.8486/0.7892 0.7807 7 0.7854 0.8511 0.5776 0.4930
CANINE-C 0.8326 0.8483 /0.7966 0.8108 / 0.8138 0.8543 0.5884 0.5211
Table 5: Scores obtained on GLUE tasks with different proportion of noise.
Model Spanish Deutsch Vietnamese models is lower. This might indicate that CANINE is more
mBERT 0.6799 0.6494 0.6361 robust to this kind of noise.
CANINE-S  0.6205 0.5655 0.4691 In this work, we did not reproduce the results of [2] on
CANINE-C  0.6390 0.6064 0.4920 TYD1 QA, which could have strengthen the confidence in

Table 6: Accuracy obtained on XNLI task when taking 70%
of noise proportion. The scores drop significantly.

for mBERT.

5. Conclusion

In this work we evaluated CANINE of standard bench-
marks that were not considered in the original article, and
we found that, for a given training procedure, it was system-
atically slightly surpassed by mBERT. We finally evaluated
the robustness of CANINE and mBERT to the addition of
artificial noise, and found that even if mBERT kept better
performances overall, the drop in scores for both CANINE

our experimental setup and in our subsequent observations,
since this was the only downstream task that was originally
considered. Similarly, doing several runs when estimating
the robustness to noise would have reduce the impact of the
stochasticity of the mechanism on smaller datasets.
Furthermore, we did not consider languages with a writ-
ing system different from the Latin script’, and our noise
mechanism would not be adapted to theme. For instance,
we cannot model noise in Japanese by swapping two char-
acters or pictograms. Another path to investigate would be
to assess the robustness to noise in real world conditions.
One would not be able to control the desired level of noise
anymore, but comparing CANINE and mBERT on text from

3The Vietnamese dataset in XNLI uses the Vietnamese alphabet which
is the Latin writing script for Vietnamese.
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Figure 3: Relative evolution of the scores on XNLI task
for CANINE and mBERT on respectively Spanish, Deutsch
and Vietnamese languages (with 70% noised dataset). The
relative accuracy drop is lower for CANINE models.
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Figure 4: Absolute evolution of the scores on XNLI task for
CANINE and mBERT on respectively Spanish, Deutsch and
Vietnamese languages (with 70% noised dataset).

social media may be another way to test prediction quality
on noisy data.
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