Numerical Imaging Project: Review of the article Globally and Locally Consistent Image Completion by S. lizuka

Victoria BRAMI - Clarine VONGPASEUT

Master Mathématiques Vision Apprentissage victoria.brami@eleves.enpc.fr - clarine.vongpaseut@eleves.enpc.fr

February 2022

Introduction: Inpainting Principles

- Goal Complete missing zones of a given image
- **Application:** Painting restoration, Special effects on Images/Videos, Photomontage etc.

Figure: Inpainting used to restore damaged artwork/pictures

Introduction: Different Approaches for Inpainting

- Historically Handmade Techniques
- Computationally based approaches:
 - Since 2000s: Patch Propagation Based Models.
 - **Since 2014:** Generative models, like Auto-Encoders and GANs to predict missing parts of the image.
- ⇒ We study a generative deep learning based model in our project

Outline

- Inpainting process using Neural Networks
- Experiences on this approach
 - Discriminant ablation study
 - Channel ablation study
- 3 Comparison with Inpainting using a Patch based method
- 4 Conclusion

Table of Contents

- Inpainting process using Neural Networks
- Experiences on this approach
 - Discriminant ablation study
 - Channel ablation study
- 3 Comparison with Inpainting using a Patch based method
- 4 Conclusion

Inpainting process using Neural Networks: Iizuka et al. model

Figure: Architecture of lizuka et al. model [1]

Inpainting process using Neural Networks: the training process

1st phase

- Completion Network only
- Apply one random mask of dimensions in $[48, 96]^2$ to each 160×160 pixel images
- Back-propagation L2 loss on the area to complete

2nd phase

- Discriminators only
- For the each image genrate two random masks
- BCE loss with images inpainted by the completion Network as fake and the original images as real

Inpainting process using Neural Networks: the training process

3rd phase

- Both networks are trained jointly
- Combining the two loss functions
- Back-propagation for each network using the gradient of the loss function w.r.t. to each network's parameter

Table of Contents

- Inpainting process using Neural Networks
- Experiences on this approach
 - Discriminant ablation study
 - Channel ablation study
- Comparison with Inpainting using a Patch based method
- 4 Conclusion

Experiments with lizuka model: Dataset and metrics

Dataset used for experimentations: CelebA dataset.

Quantitative metrics:

• Mean Squared Error (MSE):

$$MSE(I_{GT}, I_{Gen}) = \frac{1}{H} \frac{1}{W} \sum_{i} \sum_{j} (I_{GT}(i, j), I_{Gen}(i, j))^2$$

• Peak-Signal to Noise Ratio (PSNR):

$$PSNR(I_{GT}, I_{Gen}) = 10 \log_{10}(\frac{255^2}{MSE(I_{GT}, I_{Gen})})$$

- Similarity Index Measure (SSIM):
 Quantifies image quality degradation.
- Fréchet Distance (FID).

Experiments with lizuka model: FID Score

Figure: Computation of Fréchet Distance (FID) Score

Experiments: Discriminator Ablation Study

Tested the model:

- Without Local discriminator
- Without Global discriminator.

Training:

Retrained Phase 2 and Phase 3.

Masks: $\approx 9\% - 36\%$ of the image.

Evaluation:

On CelebA test set.

Masks: $\approx 9\% - 36\%$ of the image.

Figure: Discriminators architecture

Experiments: Discriminator Ablation Study

Table: Comparison between the outputs from the 3 models

→ More blurry images when ablating Local discriminator

Discriminant Ablation Study

Quantitative results:

Model	MSE			FID Score
Global only.	0.020	17.221	0.683	$100.75^{\pm0.2}$
Local only.	0.053	12.942	0.595	$69.57^{\pm0.08}$
Local and Global	0.015	18.447	0.708	$37.51^{\pm0.02}$

Table: Evaluation on CelebA test set

Combined Context discriminators significantly improves model's performances on all criteriums.

Figure: Ground Truth Only

Figure: Input Image

Figure: Global Only

Figure: Local Only

Figure: Local and Global

Objective:

Evaluate inner model parameters influence on image completion.

Framework:

- Step 1: Remove channels' outputs on the layers of the Completion Network.
- Step 2: Evaluate and compare the FID score of the model with the suppressed.

Figure: Layers where channels were been suppressed

Table: FID scores obtained after removing some channels

- \implies Significant increase of FID score on first Conv. layer, on channels 44 and 53 (FID = 93.0, 72.3 when normal model is at 37.5).
- \implies Decrease of FID score on Conv1 channel 0, conv2 channel 102 and conv14 channel 44 (FID = 32.5, 32.7 and 32.8).

Visual results

Table: Results on CelebA when removing some channels in conv layers

Figure: Ground Truth image

Figure: Input image

Figure: Conv1 channel 44 removed

Figure: Conv1 channel 0, Conv2 channel 102, Conv14 channel 44 removed

Figure: Local and Global

Experiments: Channel Ablation Study

Model	mse↓	psnr↑	ssim↑	fid↓
lizuka (Global)	0.0011	31.938	0.972	8.83
lizuka (Local)	0.0011	31.907	0.971	8.643
lizuka (remove Channel 44)	0.0016	29.706	0.964	10.891
lizuka (remove 3 Channels)	0.0010	31.486	0.970	8.061
lizuka	0.0010	31.983	0.973	7.743

Table: Scores of the different models on a batch of 280 images from CelebA test dataset (2.5-25.0% occlusions)

Removing some channels in the Completion Net does not implies a huge changes in outputs realism (see FID).

Table of Contents

- Inpainting process using Neural Networks
- Experiences on this approach
 - Discriminant ablation study
 - Channel ablation study
- 3 Comparison with Inpainting using a Patch based method
- 4 Conclusion

Patch based method used

- Optimization problem : minimizing distances between patches
- Accounts for texture
- Dependant on patch size, here 7 x 7

Figure: Example where the texture is well reconstructed [2]

Advantages

- Performs well with masks covering the background
- Idem with masks occluding textured regions such as hair

Table: Comparison of the two methods on images with the background and/or hair occluded

Figure: Input

Frame Title

Figure: Patch based method

Figure: lizuka

Figure: Ground truth

Disadvantages

- Can't construct structural parts of the face if it's missing
- Long computation time

GΤ

Table: Comparison of the two methods on images with the nose or mouth occluded

Model	MSE	PSNR	SSIM	FID
Patch-based method [2]				
lizuka	0.0010	31.983	0.973	7.743

Table: Different metrics evaluated on 280 images of Celeb A test set

Table of Contents

- Inpainting process using Neural Networks
- Experiences on this approach
 - Discriminant ablation study
 - Channel ablation study
- Comparison with Inpainting using a Patch based method
- 4 Conclusion

Conclusion

- Importance of both discriminators
- Importance of the first convolution layer
- Removing specific channels seems to improve the results in some cases
- Better performances with lizuka et al. model than with the patch-based method used for comparison

Perspectives: Towards a More Consistent Model?

Figure: Palette diffusion model [Saharia et al. 2021] [3]

• Palette: U-Net with self attention layers + noised masks in input

Perspectives: Towards a More Consistent Model?

Palette Outputs examples

Figure: Palette samples diversity. (Inputs of the mode on the left)

Figure: GT

References

- S. Iizuka, E. Simo-Serra, and H. Ishikawa, "Globally and Locally Consistent Image Completion," *ACM Transactions on Graphics (Proc. of SIGGRAPH 2017)*, vol. 36, no. 4, p. 107, 2017.
- A. Newson, A. Almansa, Y. Gousseau, and P. Pérez, "Non-Local Patch-Based Image Inpainting," *Image Processing On Line*, vol. 7, pp. 373–385, 2017. https://doi.org/10.5201/ipol.2017.189.
 - C. Saharia, W. Chan, H. Chang, C. A. Lee, J. Ho, T. Salimans, D. J. Fleet, and M. Norouzi, "Palette: Image-to-image diffusion models," arXiv preprint arXiv:2111.05826, 2021.