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Context of work

Distraction accounts for 20% of car accidents in 2020.1

Driver Monitoring System (DMS): Set of equipment tools
developed around the driver to ease his way of driving.
EU Comission: new regulations on DMS to be introduced by
2024.

→ Necessity to Improve existing systems.

1Report made by the European Comission in 2020.
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Context of work

Motivations:
Get knowledge of in-car occupation to understand the
occupants’ behaviour while driving.
Supply the best IMS possible (security, confort, etc.)

Our Goal:
Propose a real-time 3D Pose Estimation of the driver to
be capable to analyse his activities in a second phase.
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Interior Monitoring Datasets Constraints
Dataset D&A [5] Pandora[1] AutoPOSE[7] TICaM[3] DMD[6] DAD[4] DriPE[2]

Scene Type Real Sitting, In-Cabin In-Cabin Real Real Real
Condition Driving-like Driving Driving Condition Condition Condition

Occupants Driver Only Driver Only Driver Only Driver Only Driver Only Driver Only Driver Only

Views 6 1 2 1 3 2 >1
Nb. frames >9.6M 250k 1.1M / 315k(view 1) 119.7k / 3.3k 4.4M 2.1M 10k
Nb. videos 29 110 21 386 -
RGB/Gray ✓ ✓ ✓ ✓ ✓ - ✓

IR ✓ - ✓ ✓(6.7k) ✓ ✓ -
Depth ✓ ✓ ✓ ✓(6.7k) ✓ ✓ -
Subjectsa 15 (4/11) 22 (10/12) 21 (10/11) 13 (N/A) 37 (10/27) 31 (N/A) 19 (7/12)

Annotations Contents
Dataset D&A [5] Pandora[1] AutoPOSE[7] TICaM[3] DMD[6] DAD[4] DriPE[2]

Activity ✓ ✓ - ✓ ✓ - -
Nb. Activ. 83 20 - 20 13 - -

2D joints ✓ ✓ - ✓ - - ✓

3D joints ✓ ✓ ✓ - N/A - -
Format COCO 17 17 Upper Head center COCO 17 - - COCO17

Table: Main large-scale Driver Monitoring datasets

a(F/M) for female / male
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Drive And Act Dataset Format

6 views.
15 drivers filmed 20-30
min each (10 / 2 / 3).
9.6 Million frames.
Annotations triangulated
from OpenPose2

(a) COCO17 anno-
tation format4

(b) Sample from Drive&Act5

2Cao & al., OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields, in TPAMI, 2019.

4Lin & al., Microsoft COCO: Common objects in context, in ECCV, 2014.
5Martin & al., Drive&Act: A Multi-modal Dataset for Fine-grained Driver

Behavior Recognition in Autonomous Vehicles, in ICCV, 2019.
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2D Pose Models Fields

In HR Net (Top Down)

Figure: Heatmap

In OpenPifPaf (Bottom-Up)
(a) CIF

(b) CAF
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Top Down Model: HR-Net (2019)

Figure: HR-Net Model Architecture6

6Sun & al., Deep High-Resolution Representation Learning for Human Pose
Estimation, in CVPR, 2019.
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Studied models
Experiments

Bottom-Up Model: OpenPifPaf (2019-2021)

Figure: OpenPifPaf Model Architecture7

7Kreiss & al., OpenPifPaf: Composite fields for semantic keypoint detection
and spatio-temporal association, in TITS, 2021.
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2D Pose Models Finetuning

Our Framework:

Dataset: Drive & Act.
Metrics: AP (↑) and AR (↑).
Finetune on 30 epochs.
Augmentations: scale, noise, blur.
Specificity: Apply a binary mask on the joints loss discard
Feet Pose predictions.
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Studied models
Experiments

2D Pose: Visual Results
(c) HR-Net: No augmentation during training (d) HR-Net:Geometric Augmentations

(e) HR-Net: Geometric + Noise + Blurs Aug-
mentations

(f) OpenPifPaf: Geometric augmentations
(ShuffleNet-v2k16 backbone)

Table: Visualization of the retrained models
on Drive & Act test set.
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Studied models
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2D Pose: Quantitative Results

HR Net Input AP AP50 AP75 AR AR50 AR75

No Finetuning 256 x 192 85.0 96.5 90.2 90.9 98.7 93.7

Finetuned (no aug.) 256 x 192 87.0 98.1 90.8 90.3 98.7 93.9
Finetuned (with geom. aug.) 256 x 192 90.1 99.0 94.2 93.7 99.4 96.0
Finetuned (with geom. aug. 256 x 192 90.4 98.6 92.2 91.2 99.5 94.2
Finetuned + noise + blur)

OpenPifPaf Input AP AP50 AP75 AR AR50 AR75
Finetuned (with geom. aug.) 256 x 192 84.0 93.6 87.0 88.1 93.8 90.7

Table: AP and AR on Drive & Act test set

→ HR-Net finetuned with more augmentations outperforms
OpenPifPaf.
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Studied models
Experiments

2D Pose Results Analysis

Pros HR Net
1 Better scores

obtained on Drive
And Act as the
model’s size is 2.5×
bigger.

2 More keypoints
estimated.

Pros OpenPifPaf
1 No need of a prior

detection step.
2 Inference time is

much lower (almost
a requirement for
embedded systems).

3 More stability and
consistency across
consecutive frames.

Conclusion: Keep working with OpenPifPaf.
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3D Pose Lifting Model
3D Pose Lifting Experiments

3D Pose Lifting with a CNN Model

Idea: From a sequence of 2D consecutive skeleton, predicts the 3D
pose of the middle frame.
On Human3.6M8: Mean Error is 37.2mm.

(a) VideoPose3D9 Model (b) Causal Form of VideoPose3D

8Ionescu & al., Human3.6M: Large Scale Datasets and Predictive Methods for 3D
Human Sensing in Natural Environments, TPAMI, 2014.

9Pavllo & al., 3D human pose estimation in video with temporal convolutions and
semi-supervised training, in CVPR, 2019.
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3D Pose Lifting Model
3D Pose Lifting Experiments

3D Pose Lifting with a CNN Model

Figure: Adaptation of VideoPose3D with the addition of joints’
confidence scores ĉi in input.
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3D Pose Lifting with a CNN Model

Blocks kernel Size Input MPJPE(↓) P-MPJPE(↓) N-MPJPE(↓) MPJVE (↓)
length frames (mm) (mm) (mm) (mm.s−1)

B = 1 K = (3, 3) 9 34.9±0.3 23.2±0.1 27.5±0.3 6.7±0.01

B = 2 K = (3, 3, 3) 27 34.6±0.5 22.8±0.1 28.0±0.3 6.63±0.03

B = 3 K = (3, 3, 3, 3) 81 33.5±0.4 22.8±0.2 27.9±0.4 6.59±0.02

B = 4 K = (3, 3, 3, 3, 3) 243 33.3±0.3 22.6±0.1 27.6±0.3 6.55±0.01

Table: VideoPose3D predictions on Drive&Act test set. with different
architectures.

→ No major difference with bigger architecture.
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3D Pose Lifting Model
3D Pose Lifting Experiments

3D Pose Lifting with a CNN Model

(a) Angles Constraint (b) Symmetry Constraint

Figure: Kinematics Constraints added

Lsym(p̂) =
∑

((i ,j),(k,l))∈M

(∥p̂i − p̂j∥2 − ∥p̂k − p̂l∥2)
2 (1)

Lillegal(p̂) = exp (−min(
−→
nrs ·

−→vwe , 0)) (2)
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3D Pose Lifting with a CNN Model

Model MPJPE (↓) P-MPJPE (↓)
λsym = 0. 34.6±0.5 22.8±0.1

λsym = 1.10−4 33.9±0.4 22.6±0.2

λsym = 1.10−3 34.5±0.3 23.0±0.1

λsym = 1.10−2 34.9±0.4 22.9±0.1

λsym = 1.10−1 33.5±0.4 23.8±0.1

λsym = 1.100 50.0±0.6 43.7±0.3

λsym = 1.101 111.0±1.8 93.1±2.1

λsym = 1.102 194.4±19.9 156.9±20.4

Table: Results when training with various weighted symmetry loss.
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3D Pose Lifting with a CNN Model

Model MPJPE (↓) P-MPJPE (↓)
λa = 0. 34.6±0.5 22.8±0.1

λa = 1.10−3 34.5±0.4 22.7±0.1

λa = 1.10−2 34.3±0.7 22.8±0.3

λa = 1.10−1 34.7±0.4 22.9±0.0

λa = 1.100 34.3±0.3 23.0±0.1

λa = 1.101 34.3±0.4 23.6±0.3

λa = 1.102 35.3±0.8 25.0±1.0

λa = 1.103 44.2±1.9 32.4±1.4

Table: Results when training with various weighted angle loss.
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3D Pose Lifting Model
3D Pose Lifting Experiments

3D Pose Lifting Qualitative results

Figure: 3D Pose Prediction on Drive & Act test set.
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3D Pose Lifting with a CNN Model

Conclusions:

CNN-based VideoPose3D lifter works well with a Mean Error
around 34.0mm.
Study self-supervised approaches.
Look for lighter models using transformers like P-STMO10.

10Shan & al., P-STMO: Pre-trained spatial temporal many-to-one model for
3d human pose estimation. in ECCV, 2022.
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Dataset Pseudo Annotation

Motivation: Face Landmarks pose
give better
interpretability of the
driver’s state.

Goal: Incorporate the 3D face
landmarks estimation.

Means: Use a pretrained network
to estimate the 3D facial
landmarks: 3DDFA v2
model11.

+

Refined Body Pose
representation with 17 + 68

joints.12

11Guo & al., Towards fast, accurate and stable 3D dense face alignment, in
ECCV, 2020.

12Jin & al., Whole-body human pose estimation in the wild, in ECCV, 2020.
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Dataset Pseudo-Labelling

Figure: Face Alignment Protocol.
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Protocol Applied on Wholebody

Training Framework:

Input sequence: 27 frames of 17 + 68-joints skeletons.
Architecture: 2 Blocks of Causal Convolutions with 3
dilations.
Train on 100 epochs.
Loss and Metric: Mean Per Joint Error Loss.
Learning Rate and Batch size: 1.10−3 and 1024.
Add some Dropout : 0.25.
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3D Pose Lifting Results

Click for video
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Occlusions Experiments

(a) VideoPose3D initial Input (b) Added occlusions in VideoPose3D Input

Figure: Experiments on VideoPose3D’s robustness, adding occlusions in
the training to facilitate domain adaptation.
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3D Pose Lifting Comparison Results

Click for video
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Occlusions: 3D Pose Lifting Results

Model Input Occlusions MPJPE(↓) P-MPJPE(↓) N-MPJPE(↓) MPJVE (↓)
frames ratio (%) (mm) (mm) (mm) (mm.s−1)

0 % 39.4±0.8 13.4±0.2 23.8±0.2 7.28±0.02

VideoPose3D 27 5 % 39.9±0.7 14.3±0.5 23.6±0.6 7.48±0.05

10 % 40.7±1.6 14.9±0.2 24.0±1.0 7.63±0.02

20 % 41.2±0.6 15.9±0.1 24.9±0.5 7.88±0.08

30 % 42.5±0.7 16.3±0.1 26.8±0.2 8.07±0.05

40 % 41.8±0.3 16.7±0.2 27.0±0.9 8.19±0.10

0 % 37.4±0.6 12.6±0.4 18.2±0.7 5.88±0.09

VideoPose3D 243 5 % 43.1±0.3 14.2±0.3 25.0±0.8 6.86±0.08

10 % 44.8±0.5 16.4±0.1 26.0±0.7 7.34±0.06

20 % 43.4±0.3 16.6±0.2 26.6±0.3 7.64±0.03

30 % 46.5±0.5 17.5±0.1 28.0±0.3 7.81 ± 0.06
80 % 75.5±4.4 34.0±1.2 50.9±2.7 8.44±0.01

Table: Errors obtained when incorporating occlusions
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Limits of the method

Work restricted on a single dataset.
No real Ground Truth: Data is pseudo-labelled by
OpenPose13.
Intented to minimize the errors by running each evaluation 5
times.

13Cao & al., OpenPose: Realtime Multi-Person 2D Pose Estimation using
Part Affinity Fields, in TPAMI, 2019.
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Conclusion

Our Contributions:

Survey and exhaustive comparison of Interior Monitoring
datasets.
Pseudo annotation and 3D face alignment over Drive And
Act dataset.
End-to-end framework for Driver’s 3D body and face
landmarks pose estimation.
Average error in 3D Pose Estimation at 34mm on average.

34 / 36



2D Pose Estimation
2D to 3D Pose Lifting

Extension of the pipeline to Face and body Pose
Conclusions and future work

Discussions
Summary
Perspectives

Perspectives

Short term:
1 Extend the Pipeline with the addition of 3D Hands Pseudo

annotations.
2 Smooth the pose estimation over consecutive frames.
3 Study self-supervised methods deeper to discard the lack of

data issue.
4 Evaluate our framework on other datasets: Valeo collecting

the data.

Long term:
1 Lighten the model to make it embeddable.
2 Activity Recognition based on sequence of 3D Pose

Estimations.
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Thank you for your
Attention !
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3D Pose Lifting with CNN model: Semi-Supervised
Approach

Figure: VideoPose3D Semi-supervised approach14

14Pavllo & al., 3D human pose estimation in video with temporal convolutions and
semi-supervised training, in CVPR, 2019.
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3D Pose Lifting with Transformer-based model

Figure: P-STMO model15

15Shan & al., P-STMO: Pre-trained spatial temporal many-to-one model for 3d
human pose estimation. in ECCV, 2022. 5 / 5
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