Research Internship: **3D Pose Estimation for Driver Monitoring**

Victoria BRAMI

Master Mathématiques Vision Apprentissage (MVA) victoria.brami@eleves.enpc.fr

Supervised by Patrick Pérez, advised by Souhaiel Khalfaoui and Renaud Marlet

Thursday September 29th 2022

Context of work

- Distraction accounts for 20% of car accidents in 2020.¹
- **Driver Monitoring System (DMS)**: Set of equipment tools developed around the driver to ease his way of driving.
- EU Comission: new regulations on DMS to be introduced by 2024.
- → Necessity to Improve existing systems.

Context of work

Motivations:

Get knowledge of in-car occupation to understand the occupants' behaviour while driving.

Supply the best IMS possible (security, confort, etc.)

Our Goal:

Propose a real-time 3D Pose Estimation of the driver to be capable to analyse his activities in a second phase.

Outline

- 2D Pose Estimation
 - Studied models
 - Experiments
- 2 2D to 3D Pose Lifting
 - 3D Pose Lifting Model
 - 3D Pose Lifting Experiments
- 3 Extension of the pipeline to Face and body Pose
 - Principles
 - First Experiments
 - Occlusion Experiments
- 4 Conclusions and future work
 - Discussions
- École des Ponts
- Summary
- Perspectives

Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Scene Type	Real	Sitting,	In-Cabin	In-Cabin	Real	Real	Real
	Condition	Driving-like	Driving	Driving	Condition	Condition	Condition
Occupants	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only
Views	6	1	2	1	3	2	>1
Nb. frames	>9.6M	250k	1.1M / 315k(view 1)	119.7k / 3.3k	4.4M	2.1M	10k
Nb. videos	29	110	21			386	-
RGB/Gray	✓	✓	✓	✓	✓	-	✓
IR	✓	-	✓	√(6.7k)	✓	✓	-
Depth	✓	✓	✓	√(6.7k)	✓	✓	-
Subjects	15 (4/11)	22 (10/12)	21 (10/11)	13 (N/A)	37 (10/27)	31 (N/A)	19 (7/12)
			Annotations C	ontents			
Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Activity	✓	✓	=	✓	✓	-	-
Nb. Activ.	83	20	-	20	13	-	-
2D joints	✓	✓	=	✓	-	-	✓
3D joints	✓	✓	✓	-	N/A	-	-
Format	COCO 17	17 Upper	Head center	COCO 17	-	-	COCO17

Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Scene Type	Real	Sitting,	In-Cabin	In-Cabin	Real	Real	Real
	Condition	Driving-like	Driving	Driving	Condition	Condition	Condition
Occupants	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only
Views	6	1	2	1	3	2	>1
Nb. frames	>9.6M	250k	1.1M / 315k(view 1)	119.7k / 3.3k	4.4M	2.1M	10k
Nb. videos	29	110	21			386	-
RGB/Gray	✓	✓	✓	✓	✓	-	✓
IR	✓	-	✓	√(6.7k)	✓	✓	-
Depth	✓	✓	✓	√(6.7k)	✓	✓	-
Subjects ^a	15 (4/11)	22 (10/12)	21 (10/11)	13 (N/A)	37 (10/27)	31 (N/A)	19 (7/12)
			Annotations C	ontents			
Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Activity	✓	✓	=	✓	✓	-	-
Nb. Activ.	83	20	-	20	13	-	-
2D joints	✓	✓	-	✓	-	-	✓
3D joints	✓	✓	✓	-	N/A	-	-
Format	COCO 17	17 Upper	Head center	COCO 17	-	-	COCO17

Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Scene Type	Real	Sitting,	In-Cabin	In-Cabin	Real	Real	Real
	Condition	Driving-like	Driving	Driving	Condition	Condition	Condition
Occupants	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only
Views	6	1	2	1	3	2	>1
Nb. frames	>9.6M	250k	1.1M / 315k(view 1)	119.7k / 3.3k	4.4M	2.1M	10k
Nb. videos	29	110	21			386	-
RGB/Gray	✓	✓	✓	✓	✓	-	✓
IR	✓	-	✓	√(6.7k)	✓	✓	-
Depth	✓	✓	✓	√(6.7k)	✓	✓	-
Subjects ^a	15 (4/11)	22 (10/12)	21 (10/11)	13 (N/A)	37 (10/27)	31 (N/A)	19 (7/12)
			Annotations C	ontents			
Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Activity	✓	✓	=	✓	✓	-	-
Nb. Activ.	83	20	-	20	13	-	-
2D joints	✓	✓	-	✓	-	-	✓
3D joints	✓	√	√	-	N/A	-	-
Format	COCO 17	17 Upper	Head center	COCO 17	-	-	COCO17

Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Scene Type	Real	Sitting,	In-Cabin	In-Cabin	Real	Real	Real
	Condition	Driving-like	Driving	Driving	Condition	Condition	Condition
Occupants	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only
Views	6	1	2	1	3	2	>1
Nb. frames	>9.6M	250k	1.1M / 315k(view 1)	119.7k / 3.3k	4.4M	2.1M	10k
Nb. videos	29	110	21			386	-
RGB/Gray	✓	✓	✓	✓	✓	-	✓
IR	✓	-	✓	√(6.7k)	✓	✓	-
Depth	✓	✓	✓	√(6.7k)	✓	✓	-
Subjects ^a	15 (4/11)	22 (10/12)	21 (10/11)	13 (N/A)	37 (10/27)	31 (N/A)	19 (7/12)
			Annotations C	ontents			
Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Activity	✓	✓	=	✓	✓	-	-
Nb. Activ.	83	20	-	20	13	-	-
2D joints	√	✓	-	✓	-	-	✓
3D joints	√	√	√	-	N/A	-	-
Format	COCO 17	17 Upper	Head center	COCO 17	-	-	COCO17

Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Scene Type	Real	Sitting,	In-Cabin	In-Cabin	Real	Real	Real
	Condition	Driving-like	Driving	Driving	Condition	Condition	Condition
Occupants	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only	Driver Only
Views	6	1	2	1	3	2	>1
Nb. frames	>9.6M	250k	1.1M / 315k(view 1)	119.7k / 3.3k	4.4M	2.1M	10k
Nb. videos	29	110	21			386	-
RGB/Gray	✓	✓	✓	✓	✓	-	✓
IR	✓	-	✓	√(6.7k)	✓	✓	-
Depth	✓	✓	✓	√(6.7k)	✓	✓	-
Subjects ^a	15 (4/11)	22 (10/12)	21 (10/11)	13 (N/A)	37 (10/27)	31 (N/A)	19 (7/12)
			Annotations C	ontents			
Dataset	D&A [5]	Pandora[1]	AutoPOSE[7]	TICaM[3]	DMD[6]	DAD[4]	DriPE[2]
Activity	✓	✓	=	✓	✓	-	-
Nb. Activ.	83	20	-	20	13	-	-
2D joints	✓	✓	=	✓	-	-	✓
3D joints	✓	✓	✓	-	N/A	-	-
Format	COCO 17	17 Upper	Head center	COCO 17	-	-	COCO17

Drive And Act Dataset Format

- 6 views.
- 15 drivers filmed 20-30 min each (10 / 2 / 3).
- 9.6 Million frames.
- Annotations triangulated from OpenPose²

tation format⁴

(a) COCO17 anno- (b) Sample from Drive&Act⁵

²Cao & al., OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, in TPAMI, 2019.

⁴Lin & al., Microsoft COCO: Common objects in context, in ECCV, 2014. Valeo.ai ⁵Martin & al., Drive&Act: A Multi-modal Dataset for Fine-grained Driver

Outline

- 2D Pose Estimation
 - Studied models
 - Experiments
- 2 2D to 3D Pose Lifting
- 3 Extension of the pipeline to Face and body Pose
- 4 Conclusions and future work

2D Pose Models Fields

Figure: Heatmap

valeo.a

Top Down Model: HR-Net (2019)

Figure: HR-Net Model Architecture⁶

Sun & al., Deep High-Resolution Representation Learning for Human Pose Stimation, in CVPR, 2019.

Bottom-Up Model: OpenPifPaf (2019-2021)

Figure: OpenPifPaf Model Architecture⁷

2D Pose Models Finetuning

Our Framework:

- Dataset: Drive & Act.
- Metrics: AP (\uparrow) and AR (\uparrow) .
- Finetune on 30 epochs.
- Augmentations: scale, noise, blur.
- Specificity: Apply a binary mask on the joints loss discard
 Feet Pose predictions.

(f) OpenPifPaf:

2D Pose: Visual Results

(e) HR-Net: Geometric + Noise + Blurs Aug-

(d) HR-Net:Geometric Augmentations

OKS=0.898

Geometric augmentations

Table: Visualization of the retrained models on Drive & Act test set.

<ロ > → □ > → □ > → □ > □ □ = り へ ○

2D Pose: Quantitative Results

HR Net	Input	AP	AP50	AP75	AR	AR50	AR75
No Finetuning	256 x 192	85.0	96.5	90.2	90.9	98.7	93.7
Finetuned (no aug.) Finetuned (with geom. aug.) Finetuned (with geom. aug. + noise + blur)	256 × 192 256 × 192 256 × 192	87.0 90.1 90.4	98.1 99.0 98.6	90.8 94.2 92.2	90.3 93.7 91.2	98.7 99.4 99.5	93.9 96.0 94.2
OpenPifPaf	Input	AP	AP50	AP75	AR	AR50	AR75
Finetuned (with geom. aug.)	256 x 192	84.0	93.6	87.0	88.1	93.8	90.7

Table: AP and AR on Drive & Act test set

→ HR-Net finetuned with more augmentations outperforms OpenPifPaf. valeo.ai

2D Pose Results Analysis

Pros HR Net

- Better scores obtained on Drive And Act as the model's size is 2.5× bigger.
- 2 More keypoints estimated.

Pros OpenPifPaf

- No need of a prior detection step.
- Inference time is much lower (almost a requirement for embedded systems).
- More stability and consistency across consecutive frames.

• **Conclusion**: Keep working with OpenPifPaf.

Outline

- 1 2D Pose Estimation
- 2 2D to 3D Pose Lifting
 - 3D Pose Lifting Model
 - 3D Pose Lifting Experiments
- 3 Extension of the pipeline to Face and body Pose
- 4 Conclusions and future work

Idea: From a sequence of 2D consecutive skeleton, predicts the 3D pose of the middle frame.

On Human3.6M8: Mean Error is 37.2mm.

(a) VideoPose3D9 Model

(b) Causal Form of VideoPose3D

⁸Ionescu & al., Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, *TPAMI*, 2014.

Pavllo & al., 3D human pose estimation in video with temporal convolutions and semi-supervised training, in CVPR, 2019.

Figure: Adaptation of VideoPose3D with the addition of joints' confidence scores \hat{c}_i in input.

Blocks	kernel Size length	Input frames	MPJPE(↓) (mm)	P-MPJPE(↓) (mm)	N-MPJPE(↓) (mm)	$\begin{array}{c} MPJVE\ (\downarrow) \\ (mm.s^{-1}) \end{array}$
B=1	K = (3,3)	9	34.9±0.3	23.2±0.1	27.5 ± 0.3	6.7±0.01
B=2	K = (3, 3, 3)	27	34.6±0.5	$22.8{\pm0.1}$	$28.0{\pm0.3}$	$6.63{\scriptstyle\pm0.03}$
B = 3	K = (3, 3, 3, 3)	81	33.5±0.4	$22.8{\pm0.2}$	$27.9{\pm0.4}$	$6.59{\scriptstyle\pm0.02}$
B = 4	K = (3, 3, 3, 3, 3)	243	33.3±0.3	$\underline{22.6{\pm}0.1}$	$27.6{\pm0.3}$	$\underline{6.55{\pm0.01}}$

Table: VideoPose3D predictions on *Drive&Act* test set. with different architectures.

No major difference with bigger architecture.

(b) Symmetry Constraint

Figure: Kinematics Constraints added

$$\mathcal{L}_{\mathsf{sym}}(\hat{p}) = \sum_{((i,j),(k,l)) \in M} (\|\hat{p}_i - \hat{p}_j\|_2 - \|\hat{p}_k - \hat{p}_l\|_2)^2 \tag{1}$$

$$\mathcal{L}_{\mathsf{illegal}}(\hat{p}) =$$

$$\mathcal{L}_{\mathsf{illegal}}(\hat{p}) = \exp\left(-\min(\overrightarrow{n_s^{\prime}} \cdot \overrightarrow{v_{we}}, 0)\right)$$

Model	MPJPE (↓)	P-MPJPE (↓)
$\lambda_{sym}=0.$	34.6±0.5	22.8±0.1
$\lambda_{sym}=1.10^{-4}$	33.9±0.4	$\underline{22.6{\pm}0.2}$
$\lambda_{sym}=1.10^{-3}$	34.5±0.3	$23.0{\pm}0.1$
$\lambda_{\mathit{sym}} = 1.10^{-2}$	34.9±0.4	$22.9{\pm0.1}$
$\lambda_{\mathit{sym}} = 1.10^{-1}$	<u>33.5±0.4</u>	$23.8{\pm0.1}$
$\lambda_{sym}=1.10^0$	50.0±0.6	$43.7{\pm0.3}$
$\lambda_{sym}=1.10^1$	111.0±1.8	$93.1{\pm}2.1$
$\lambda_{\mathit{sym}} = 1.10^2$	194.4±19.9	$156.9{\pm}20.4$

Table: Results when training with various weighted symmetry loss.

Model	MPJPE (↓)	P-MPJPE (↓)
$\lambda_a = 0.$	34.6±0.5	22.8 ± 0.1
$\lambda_a=1.10^{-3}$	34.5±0.4	$22.7{\pm0.1}$
$\lambda_{\it a}=1.10^{-2}$	34.3±0.7	$22.8{\pm0.3}$
$\lambda_{\it a}=1.10^{-1}$	34.7±0.4	$22.9{\pm0.0}$
$\lambda_{\it a}=1.10^{ m 0}$	34.3±0.3	$23.0{\pm}0.1$
$\lambda_{\it a}=1.10^1$	34.3±0.4	$23.6{\pm}0.3$
$\lambda_{\it a}=1.10^2$	35.3±0.8	$25.0{\pm}1.0$
$\lambda_a = 1.10^3$	44.2±1.9	$32.4{\pm}1.4$

Table: Results when training with various weighted angle loss.

3D Pose Lifting Qualitative results

Figure: 3D Pose Prediction on Drive & Act test set.

Conclusions:

- CNN-based VideoPose3D lifter works well with a Mean Error around 34.0mm.
- Study self-supervised approaches.
- Look for lighter models using transformers like P-STMO¹⁰.

The state of the s

Outline

- 2D Pose Estimation
- 2 2D to 3D Pose Lifting
- 3 Extension of the pipeline to Face and body Pose
 - Principles
 - First Experiments
 - Occlusion Experiments
- 4 Conclusions and future work

Dataset Pseudo Annotation

Motivation: Face Landmarks pose

give better

interpretability of the

driver's state.

Goal: Incorporate the 3D face

landmarks estimation.

Means: Use a pretrained network

to estimate the 3D facial

landmarks: 3DDFA v2

model¹¹.

Refined Body Pose representation with 17 + 68 joints. 12

¹¹ Guo & al., Towards fast, accurate and stable 3D dense face alignment, in Valeo.ai

¹² Jin & al., Whole-body human pose estimation in the wild, in ECCV, 2020 = 999

Dataset Pseudo-Labelling

Figure: Face Alignment Protocol.

Protocol Applied on Wholebody

Training Framework:

- Input sequence: 27 frames of 17 + 68-joints skeletons.
- Architecture: 2 Blocks of Causal Convolutions with 3 dilations.
- Train on 100 epochs.
- Loss and Metric: Mean Per Joint Error Loss.
- Learning Rate and Batch size: 1.10^{-3} and 1024.
- Add some Dropout : 0.25.

3D Pose Lifting Results

Click for video

Occlusions Experiments

(a) VideoPose3D initial Input

(b) Added occlusions in VideoPose3D Input

Figure: Experiments on VideoPose3D's robustness, adding occlusions in the training to facilitate domain adaptation.

3D Pose Lifting Comparison Results

Click for video

Occlusions: 3D Pose Lifting Results

Model	Input frames	Occlusions ratio (%)	MPJPE(↓) (mm)	P-MPJPE(↓) (mm)	N-MPJPE(↓) (mm)	MPJVE (\downarrow) (mm.s ⁻¹)
		0 %	39.4±0.8	13.4±0.2	23.8±0.2	7.28 ± 0.02
VideoPose3D	27	5 %	39.9±0.7	14.3 ± 0.5	23.6 ± 0.6	$7.48{\scriptstyle\pm0.05}$
		10 %	40.7±1.6	$14.9{\scriptstyle\pm0.2}$	24.0 ± 1.0	$7.63{\scriptstyle\pm0.02}$
		20 %	41.2±0.6	$15.9{\scriptstyle\pm0.1}$	24.9 ± 0.5	$7.88{\scriptstyle\pm0.08}$
		30 %	42.5±0.7	$16.3{\scriptstyle\pm0.1}$	26.8 ± 0.2	8.07 ± 0.05
		40 %	41.8±0.3	$16.7{\pm0.2}$	$27.0{\pm}0.9$	$8.19{\scriptstyle\pm0.10}$
		0 %	37.4±0.6	12.6±0.4	18.2±0.7	5.88±0.09
VideoPose3D	243	5 %	43.1±0.3	14.2 ± 0.3	25.0 ± 0.8	$\underline{6.86{\pm0.08}}$
		10 %	44.8±0.5	$16.4{\scriptstyle \pm 0.1}$	$26.0{\pm0.7}$	$7.34{\scriptstyle\pm0.06}$
		20 %	43.4±0.3	$16.6{\pm}0.2$	26.6 ± 0.3	$7.64{\scriptstyle\pm0.03}$
		30 %	46.5±0.5	$17.5{\scriptstyle\pm0.1}$	$28.0{\pm0.3}$	$\textbf{7.81} \pm \textbf{0.06}$
		80 %	75.5±4.4	$34.0{\scriptstyle\pm1.2}$	$50.9{\pm}2.7$	$8.44{\scriptstyle\pm0.01}$

Table: Errors obtained when incorporating occlusions

Outline

- 2D Pose Estimation
- 2 2D to 3D Pose Lifting
- 3 Extension of the pipeline to Face and body Pose
- 4 Conclusions and future work
 - Discussions
 - Summary
 - Perspectives

Limits of the method

- Work restricted on a single dataset.
- No real Ground Truth: Data is pseudo-labelled by OpenPose¹³.
- Intented to minimize the errors by running each evaluation 5 times.

¹³Cao & al., OpenPose: Realtime Multi-Person 2D Pose Estimation using
Part Affinity Fields, in *TPAMI*, 2019.

Conclusion

Our Contributions:

- Survey and exhaustive comparison of Interior Monitoring datasets.
- Pseudo annotation and 3D face alignment over Drive And Act dataset.
- End-to-end framework for Driver's 3D body and face landmarks pose estimation.
- Average error in 3D Pose Estimation at 34mm on average.

Perspectives

Short term:

- Extend the Pipeline with the addition of 3D Hands Pseudo annotations.
- Smooth the pose estimation over consecutive frames.
- Study self-supervised methods deeper to discard the lack of data issue.
- Evaluate our framework on other datasets: Valeo collecting the data.

Long term:

- Lighten the model to make it embeddable.
- Activity Recognition based on sequence of 3D Pose Estimations.

Thank you for your Attention!

References I

Poseidon: Face-from-depth for driver pose estimation. In CVPR, 2017.

Romain Guesdon, Carlos Crispim-Junior, and Laure Tougne. Dripe: A dataset for human pose estimation in real-world driving settings. In ICCV, 2021.

Jigyasa Singh Katrolia, Bruno Mirbach, Ahmed El-Sherif, Hartmut Feld, Jason Rambach, and Didier Stricker.

TICaM: A time-of-flight in-car cabin monitoring dataset.

arXiv preprint arXiv:2103.11719, 2021.

valeo.ai

References II

Okan Kopuklu, Jiapeng Zheng, Hang Xu, and Gerhard Rigoll. Driver anomaly detection: A dataset and contrastive learning approach.

In WACV, 2021.

Manuel Martin, Alina Roitberg, Monica Haurilet, Matthias Horne, Simon Reiß, Michael Voit, and Rainer Stiefelhagen. DriveAct: A multi-modal dataset for fine-grained driver behavior recognition in autonomous vehicles.

In ICCV, 2019.

References III

Juan Diego Ortega, Neslihan Kose, Paola Cañas, Min-An Chao, Alexander Unnervik, Marcos Nieto, Oihana Otaegui, and Luis Salgado.

Dmd: A large-scale multi-modal driver monitoring dataset for attention and alertness analysis.

In ECCV, 2020.

Mohamed Selim, Ahmet Firintepe, Alain Pagani, and Didier Stricker.

AutoPOSE: Large-scale automotive driver head pose and gaze dataset with deep head orientation baseline.

In VISIGRAPP (4: VISAPP), 2020.

3D Pose Lifting with CNN model: Semi-Supervised Approach

Figure: VideoPose3D Semi-supervised approach¹⁴

Valeo.ai

Pavllo & al., 3D human pose estimation in video with temporal convolutions and

semi-supervised training, in CVPR, 2019.

3D Pose Lifting with Transformer-based model

